История систем счисления
0150 BC-09-16 17:54:50
Еврейская система счисления
Каждая буква имеет своё числовое значение от 1 до 400. Ноль отсутствует. Цифры, записанные таким образом, наиболее часто можно встретить в нумерации лет по иудейскому календарю. Алфавитные обозначения чисел были заимствованы евреями у древних греков, по-видимому из Милета, которые изобрели эти обозначения ещё в VII в. до н. э. У евреев использование алфавитных обозначений чисел окончательно вошло в обиход ко II в. до н. э. Еврейские числа записываются справа налево, в порядке убывания разрядов; перед последней (левой) буквой ставится двойная кавычка — гершаим. Если буква всего одна, то после неё может ставиться одиночная кавычка — гереш. Для обозначения 1-9 тысяч используются первые девять букв с числовым значением 1-9, после которых ставится апостроф (гереш). Еврейская система счисления — аддитивная (не позиционная): числа, обозначаемые буквами, просто складываются.
0500 BC-01-02 00:59:10
Греческая (ионийская) система счисления
Данная система счисления, так же как и славянская, является алфавитной, т.е. использует буквы в написании чисел. Определённой букве в соответствие ставилась цифра:
0550 BC-01-02 16:18:23
Римская система счисления
римская система не слишком принципиально отличается от египетской. В ней для обозначения чисел 1, 5, 10, 50, 100, и 1000 используются заглавные латинские буквы I, V, X, C, D и M соответственно, являющиеся цифрами этой системы счисления. Число в римской системе счисления обозначается набором стоящих подряд цифр. Значение числа равно: сумме значений идущих подряд нескольких одинаковых цифр (назовём их группой первого вида); разности значений двух цифр, если слева от большей цифры стоит меньшая. В этом случае от значения большей цифры отнимается значение меньшей цифры. Вместе они образуют группу второго вида. Заметим, что левая цифра может быть меньше правой максимум на один порядок: так, перед L(50) и С(100) из "младших" может стоять только X(10), перед D(500) и M(1000) - только C(100), перед V(5) - только I(1); сумме значений групп и цифр, не вошедших в группы первого или второго вида.
0550-08-14 03:26:12
Система счисления племени Майя
У майя существовали две системы счисления: одна, напоминающая египетскую, употреблялась в повседневной жизни, другая – позиционная, с основанием 20 и особым знаком для нуля, применялась при календарных расчетах. Запись в этой системе, как и в нашей современной, носила абсолютный характер. Эта система использовалась для календарных расчётов и называлась «долгим счётом». В быту майя использовали аддитивную непозиционную систему, сходную с древнеегипетской. Об этой системе дают представление сами цифры майя, которые являются записью первых 19 натуральных чисел в пятеричной непозиционной системе счисления. Аналогичный принцип составных цифр использован в древнейшей известной шестидесятеричной позиционной системе счисления и древнекитайской десятичной позиционной системе для расчётов на счётной доске. Цифры майя состояли из нуля, который обозначался пустой ракушкой, и 19 составных цифр. Эти цифры конструировались из знака единицы (точка) и знака пятёрки (горизонтальная черта). Например, цифра, обозначающая число 19, писалась как четыре точки в горизонтальном ряду над тремя горизонтальными линиями.
1050-05-11 13:36:14
Индийская система счисления
Уже в древние времена учёные Индии на своём, во многом оригинальном пути развития достигли высокого уровня математических знаний. В I тысячелетии н. э. индийские учёные подняли античную математику на новую, более высокую ступень. Они изобрели привычную нам десятичную позиционную систему записи чисел, предложили символы для 10 цифр (которые, с некоторыми изменениями, используются повсеместно в наши дни), заложили основы десятичной арифметики, комбинаторики, разнообразных численных методов, в том числе тригонометрических расчётов. Первоначально этими знаками представлялись числа 1, 2, 3 ... 9, 10, 20, 30 ... 90, 100, 1000; с их помощью описывались другие числа. Впоследствии был введен особый знак (жирная точка, кружок) для указания пустующею разряда; знаки для чисел, больших 9, вышли из употребления, и нумерация" "девангари" превратилась в десятичную поместную систему. Как и когда совершился этот переход, до сих пор неизвестно.
10950 BC-01-02 04:52:09
Единичная система счисления
Потребность в записи чисел появилась в очень древние времена, как только люди начали считать. Количество предметов, например овец, изображалось нанесением чёрточек или засечек на какой - либо твёрдой поверхности: камне, глине, дереве (до изобретения бумаги было ещё очень и очень далеко). Каждой овце в такой записи соответствовала одна чёрточка. Археологами найдены такие "записи" при раскопках культурных слоёв, относящихся к периоду палеолита (10 - 11 тысяч лет до н.э.). Учёные назвали этот способ записи чисел единичной ("палочной") системой счисления. Неудобства такой системы записи чисел и ограниченность её применения очевидны: чем большее число надо записать, тем длиннее строка из палочек. Можно предложить, что для облегчения счёта люди стали группировать предметы по 3, 5, 10 штук.
1136-01-02 13:59:10
Славянская система счисления
Данная система счисления является алфавитной т.е. вместо цифр используются буквы алфавита. Данная система счисления применялась нашими предками и была достаточно сложной, т.к. использует в качестве цифр 27 букв. Данная система является непозиционной, т.е. число не зависит от последовательности цифр.
2050 BC-07-27 17:48:37
Вавилонская шестидесятеричная система
Числа в этой системе счисления составлялись из знаков двух видов: прямой клин служил для обозначения единиц, а лежачий клин - для обозначения десятков. Для определения значения числа надо было изображение числа разбить на разряды справа налево. Новый разряд начинался с появления прямого клина после лежачего, если рассматривать число справа налево. Значение числа определяли по значениям составляющих его цифр, но с учётом того, что цифры в каждом последующем разряде значили в 60 раз больше тех же цифр в предыдущем разряде.
2550 BC-01-02 22:34:06
Древнеегипетская десятичная непозиционная система
В древнеегипетской системе счисления использовались специальные цифры для обозначения чисел 1, 10, 102, 103, 104, 105, 106, 107. Числа в египетской системе счисления записывались как комбинации этих цифр, в которых каждая из них повторялась не более девяти раз. В основе как палочной, так и древнеегипетской системы счисления лежал простой принцип сложения, согласно которому значение числа равно сумме значений цифр, участвующих в его записи. Учёные относят древнеегипетскую систему счисления к десятичной непозиционной.
5050 BC-08-17 00:19:08
Греческая (аттическая) система счисления
Аттическая система счисления использовалась греками, по-видимому, уже к 5 в. до н.э. По существу это была десятичная система (хотя в ней также было выделено и число пять), а аттические обозначения чисел использовали повторы коллективных символов. Черта, обозначавшая единицу, повторенная нужное число раз, означала числа до четырех. После четырех черт греки вместо пяти черт ввели новый символ Г, первую букву слова «пента» (пять) (буква Г употреблялась для обозначения звука «п», а не «г»). Дойдя до десяти, они ввели еще один новый символ D, первую букву слова «дека» (десять). Так как система была десятичной, грекам потребовались новые символы для каждой новой степени числа 10: символ H означал 100 (гекатон), X – 1000 (хилиои), символ M – 10000 (мириои или мириада). Используя число 5 как промежуточное подоснование системы счисления, греки на основе принципа умножения комбинировали пятерку с символами степеней числа 10.